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Abstract 

Autonomous robots can perform a variety of operations without human guidance in a 

particular environment. These robots can evaluate their surroundings and receive data from sensors  

via hardware and process it using software. Autonomous robots are most prominently used in 

factories, industries, space exploration, and UAVs’. Being one of the leading technologies in 

today’s industry, these robots can carry out a plethora of civilian purposes. 

The goal of the project was to construct a Search and Rescue Robot capable of dropping a 

cube 12 inches from an infrared beacon while avoiding obstacles in its path and adapting to a 

dynamic environment. The robot had to utilize various pieces of equipment to accomplish its task. 

Such equipment included various sensors to detect distance and light and a drop-off mechanism 

consisting of an arm and funnel. Other than rescue operations, this project demonstrated that such 

a design has great potential for applications in space as well. Some include dropping a marker at a 

specific location on different planets for future explorers. 
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Introduction 

 The objective of this project was to construct a robot that could drop a cube 12 inches from 

an infrared beacon. The robot accomplished this task through a plethora of equipment, such as 

sensors and a drop-off mechanism. It primarily used an infrared sensor and a proximity sensor to 

accomplish this task. The infrared sensor ensured the detection of the infrared beacon, and the 

proximity sensor calculated how far the robot was from the beacon. The robot was powered by 

three motors and an Arduino microcontroller. 

The robot was controlled by a Logitech 3D Extreme Pro Joystick. This joystick was 

calibrated using an X, Y, Z, and Z rotational axis. The software used to program the robot was the 

2011 LabVIEW Program. This program allowed multiple “sub-programs” to be constructed for 

the different aspects of the robot that needed to be programmed.  

 Working on this project demonstrated that this robot has great potential for other NASA-

affiliated endeavors. This robot serves as a model for a search and rescue robot that could be 

utilized by the Stevens fire department; the robot could be sent in to drop a cell phone or an oxygen 

mask for a person trapped in a burning building. However, even in space, this robot could be used 

extensively. The robot could be deployed to drop off a beacon on another plane that could act as a 

marker for spacecraft to land. Or the robot could deliver medical aid & supplies to astronauts in 

space. Clearly, this project could be used in many applications in space. 

 

 

 

 



 

5 
 

Robot Design 

Below is the sub system block diagram for the functions and design of the SRR.      

 

 In order to determine how to build the robot, an alternative design matrix was constructed 

in order to evaluate which design was the most efficient at achieving the objective of dropping the 

payload exactly 12 inches from the infrared beacon. 

 



 

6 
 

 

 
Figure 1: Alternate Design Matrix  

Four designs were conceived for a drop-off mechanism, although there could be numerous 

variations: a ramp, a conveyor belt, an arm and funnel, and a pulley.  These designs were compared 

to the design parameters and acceptance criteria. The acceptance criteria were weighed by the team 

according to its importance to the particular design under consideration. The designs were 

evaluated on a scale of 1-10 (1 being the worst, 10 being the best) of how effectively they met a 

certain criterion. The scores were then cross multiplied and summed down, and the design with 

the highest score was chosen. This allowed us to determine mathematically which design was the 

most efficient. Since the third design, the arm & funnel had the highest score, it was the design 

chosen. 
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Design 1, the ramp would have involved the cube being pushed down an inclined plane. 

This design would require a motor to push an object that would send the cube down an inclined 

plane. It was a simple idea; but its lack of complexity and aesthetics made it unappealing.  

 

 

 

 

 

 

 

Figure 2: CAD model of the ramp 

  



 

8 
 

Design 2 a conveyor belt would have involved a motor controlling a belt that pushed the 

cube to the robot’s edge. At that point the cube would fall down a slide. This idea was far more 

complex than the ramp design but it would put a lot of weight on the robot and greatly strain the 

motor controlling the conveyor belt and be an inaccurate drop. 

 

 

 

 

 

Figure 3: The Conveyor Belt design 
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Design 3, the arm and funnel was a simple but efficient design. A motor would control 

an arm that held the cube; the motor would then turn the arm and the cube would fall (by gravity) 

into the funnel. This concept wouldn’t add too much weight to the robot, and wouldn’t strain the 

robot. Nevertheless, it still maintained a degree of complexity and was aesthetically pleasing. This 

design proved that it could accomplish the objectives and achieved a high score on the design 

matrix.  

 

 

 

Figure 4: CAD model of Arm 
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The final design was a pulley. This idea would involve a block-and-tackle system.  The 

cube would be on a ledge that was pointing downwards, but the cube would be prevented from 

falling by a block. When the robot reached 12 inches from the infrared beacon, a pulley would pull 

the block up and the cube would fall. In order to ensure a smooth & precise landing, a funnel or 

slide would be needed. Otherwise, the cube would be likely to bounce around and not land 12 

inches away from the robot. Though this design also met objectives it was pretty complex and not 

very efficient. The pulley would likely run into many problems and would have to be re-done after 

every time the cube was dropped. Thus, the arm and funnel proved to be the most efficient design 

and was chosen. 

 

Figure 5: A CAD model of the pulley 
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Mechanical Engineering 

 After deciding the design, a material had to be chosen to construct the parts. Plastic was 

chosen. Plastic is moldable, sturdy, and aesthetically pleasing. It proved easy to cut, drill into, and 

shape. Additionally, this material displayed its sturdiness by holding the parts together and not 

falling apart even once. Finally, plastic added a nice finish to the project.  

 The mechanical engineering components include: the base, the supports, the cubeholder, 

the arm, and the funnel. The base is a 3” by 4.5” piece of plastic that sits atop the Arduino. It serves 

as a platform for the drop-off mechanism and is held up by the supports.  

 

Figure 6: The base of the robot 

The supports are 2” by 2” squares (one on each side of the robot). The supports hold the 

base up, and ensure a solid foundation for the drop-off mechanism. The cubeholder is a cube with 

each side being 1.2” long. It is close in dimension to the actual 1” cube. As a result, it holds the 

cube firmly but allows the cube to fall freely. This ensures the cube falls at the right time; not too 

early, not too late. The cubeholder is attached to the end of the arm.  
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Figure 7: The cubeholder with the cube 

The arm is 3” by 1” piece of plastic that is connected via a shaft to a motor. This allows 

the arm to be rotated nearly 180 degrees. Additionally, the arm’s end with cubeholder rests upon 

the ledge; the motor doesn’t have to rotate the arm 180 degrees easing the motor’s workload. The 

arm is rotated and drops the cube into the funnel which guides it to its destination.  

 

Figure 8: Arm with the cubeholder. On the left of the arm is the shaft that connects it to the motor  

The funnel is a 2” by 3” piece that is positioned just 1.5” above the ground. The cube is 

dropped into the funnel and the funnel’s position close to the ground allows the cube to be dropped 

precisely at 12 inches. 
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Figure 9: The funnel 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 10: A side view of the robot with all the mechanical parts labelled 
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Electrical Engineering: 

The team’s SRR required a couple of sensors and external circuitry to fulfill its tasks. The 

sensors acted as variable inputs which allowed it to sense its environment. Stevens Institute of 

Technology customized the Arduino board to sustain the motor shield along with other functions 

necessary for the SRR to function correctly. The PIC board has a variety of I/O ports which allow 

for the wiring of sensors and other circuitry that is necessary. This board has analog ports, digita l 

ports, and motor power ports. Analog ports are used to read a continuous voltage from the sensors 

while digital ports are used to turn the third motor on or off. The motor power ports are used to 

drive the two navigation motors. The PIC board has the capacity to sustain up to three motors. It 

is attached to a 9v battery along with two motors which 

are used to maneuver the two wheels attached to the 

robot chassis. 

The Arduino Uno acted as the brain of this robot. 

The Arduino processed the code and outputted 

instructions to the robot based on its input. This 

particular Arduino processed the sensor data along with 

the data that was coming in from the LabVIEW 

software. It constantly sent and received signals from 

both the software and the sensors attached to the PIC 

board on the robot.  

The team used two main sensors to accomplish the objectives and reach the goal. The first 

sensor was the infrared sensor. This sensor was used to represent the detection of a human that 

Figure 11: Arduino mounted on PIC 
board 
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may be stuck under rubble or in a trapped building. The infrared sensor senses its surroundings 

by either emitting or detecting infrared radiation. These sensors can also 

be used to detect the heat of a human being or detect motion. Infrared 

light is not visible to the human eye and therefore cannot be seen without 

a phone. By using the camera app, you can see the light purplish-

violet light being emitted from the source. When the Arduino receives 

the sensor data, the data is raw. This means that the value is not in a recognizable unit of measure; 

therefore, it must be converted by dividing by 10,000 to get a voltage value between 0-5 volts. The 

conversion is done in the LabVIEW Software.  

The second sensor that the team used was the proximity sensor. A proximity sensor emits 

an electromagnetic field or an electromagnetic beam of radiation and then monitors the changes in 

the field. Each sensor has a transmitter and receiver. The transmit ter 

emits a signal which then bounces off the nearest physical object 

with which it comes in contact. The receiver then receives this 

signal and determines the distance between the sensor and the 

physical object. The Arduino then outputs this as raw data. The conversion from raw data to 

distance is non-linear and it needs further conversion. To alter the data to a value of inches, it is 

divided by 74, 938 and then the -0.8206th root of that number is taken. This allowed the person 

driving the robot to see the exact positioning of the object in inches and stop at a particular distance 

away from the infrared emitter or human being. However for this particular project, the objective 

required the cube to be dropped exactly 12 inches away from the infrared beacon which 

represented a human.  

Figure 12: Infrared 

Sensor 

Figure 13: Proximity Sensor 
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For the drop-off mechanism to function correctly, it required an external circuit so the 

Arduino and PIC board can support the third motor. This circuit consisted of a 1N4001 diode, 10k 

Ohms resistor, TIP121 NPN Transistor, and the third Lego motor. A schematic of the circuit is 

shown below.  

 

 

The purpose of this circuit was to limit the current flow that goes to the motor so that the 

Arduino doesn’t short out. The resistor limits the current and voltage, while the 

diode is put in parallel with the motor to turn it on and off. The image on the right 

is the third motor circuit attached to the base of the SRR. When 5 volts are sent to 

the motor, the motor turns on and spins the arm of the robot and drops the cube in 

to the funnel.  

  

Figure 15: Third motor  

external circuit 

Figure 14: Schematic of Third motor circuit 
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Software Engineering:  

LabVIEW (an acronym for Laboratory Virtual Instrument Engineering Workbench) is a 

system-design platform and development environment for a visual programming language from 

National Instruments. LabVIEW ties the creation of user interfaces (called front panels) into the 

development cycle. LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI 

has three components: a block diagram, a front panel and a connector panel. The last is used to 

represent the VI in the block diagrams of other, calling VIs. The front panel is built using controls 

and indicators. Controls are inputs – they allow a user to supply information to the VI. Indicators 

are outputs – they indicate, or display, the results based on the inputs given to the VI.  

The programming panel, which is called a block diagram, contains the graphical source 

code. All of the objects placed on the front panel will appear on the back panel as terminals. The 

block diagram also contains structures and functions which perform operations on controls and 

supply data to indicators. The structures and functions are found on the LabVIEW Functions 

Palette and can be placed on the block diagram. Collectively controls, indicators, structures and 

functions will be referred to as nodes. Nodes are connected to one another using wires – e.g. two 

controls and an indicator can be wired to the addition function so that the indicator displays the 

sum of the two controls. Thus a virtual instrument can either be run as a program, with the front 

panel serving as a user interface, or, when dropped as a node onto the block diagram, the front 

panel defines the inputs and outputs for the given node through the connector pane. This implies 

each VI can be easily tested before being embedded as a subroutine into a larger 

program.  

Figure 16: SubVI used in block diagram 
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The SubVI that was used in the block diagram was customized to interface with the 

Arduino on the PIC board. SubVI’s are used to read the raw data from the analog and digital ports 

on the PIC board. Appendix A contains the block diagram for the SubVI that was used in the block 

diagram.  

To drive the robot, the Logitech 3D Joystick Pro was used. This joystick contained 4 axes: 

X axis, Y axis, Z axis, & Z axis rotational. The X axis was used to move the SRR right and left, Y 

axis for up and down movement, and the Z axis was for when the joystick was in between the X 

and Y axis. Using the LabVIEW software, a sample block diagram was programmed to calibrate 

the joystick. This block diagram, shown below, consisted of a couple of components. First the 

LabVIEW software has to acquire the data and recognize the joystick. Then it takes the position 

of where the joystick is on the three axis and outputs it onto the front panel. After maneuver ing 

the joystick in all four directions, the max value was 33,000 while the minimum was - 33,000 for 

each of the extremes on the joystick. These values were used in the main program/block diagram 

to determine the movement of the SRR.  

 

Figure 17: Joystick calibration block diagram 
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The main block diagram code, shown in Appendix A, consisted of three main portions. 

The first of these three portions included movement of the SRR. First, the joystick was initial ized 

and connected to interface with the computer. Then, each of the axis values were outputted onto 

the front panel for debugging issues. Using the data interpreted from the team’s sample block 

diagram for the joystick, a threshold of 30,000 was set. Then, using basic Boolean logic along with 

comparators, the direction of the SRR was determined by the outputted values, either 0 or 1. Each 

of the axis values were compared to the threshold, and then chosen based on the Boolean logic 

(AND & OR Gates). After that, based on which axis was greater, the output was fed into a case 

structure. This case structure included four different situations, up, down, right, or left. Once the 

proper case structure was executed, the motors were either turned on or off, and the direction was 

changed to comply with the direction of the robot. The motor speed is currently set at about 1.5 

volts for precision.  

The second part of the block diagram included the code for the sensor data. As mentioned 

above, two sensors were used to accomplish this task. Using the SubVI, signals coming in from 

the analog ports on the PIC board were analyzed by the software. This raw data was then received, 

processed by the block diagram, and outputted to the front panel for the user to see. The infrared 

data was divided by 10,000 to get a more accurate voltage reading. The proximity sensor raw data 

had to go through a series of conversions to appear as a value in inches, as described above. Along 

with that, a graph for each sensor was also put on the front panel. These graphs act as oscilloscopes 

in real life and output a graph of the sensor data received by the Arduino.  

The last part of this block diagram was for the drop-off mechanism or package release. 

This included a simple true/false push button which is inputted into a true/false case structure. The 

case structure either turns the motor on or off. The motor is attached to a pulse width modulator 
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(PWM) digital pin on the PIC board. This allows for the motor speed to be altered for the users’ 

desire.  

The front panel or user interface for SRR consists of several components for the users’ 

ease. As shown in appendix A, there are two indicators for “a data input error” and a “COM port 

error”. Both these represent errors which may occur while connecting the SRR to a laptop. They 

are there for debugging warning lights to see if there are any problems with the input string or 

connection. The package release button is a simple true or false button which either turns the motor 

on or off. This is there for the users’ benefit so that when the driver has reached twelve inches 

away from its target, they can drop off the marker or cube. Next, there are two graphs for the 

infrared and proximity sensor. The front panel shows the output of the Arduino and the converted 

data for each of the sensors. Along with that it outputs it onto a graph which depicts each of the 

values received vs the time. Last, there are output boxes for the joystick axis values. These values 

are used for debugging purposes. Overall, the front panel is designed for the users’ ease and access 

to all the SRR functions. On the next page, there is a flowchart which goes through the high level 

algorithm when programming the SRR.  
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 Figure 18: Flowchart for SRR Software 
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Testing: 

To test the efficiency of the SRR, an arena at Stevens Institute of Technology was used. 

Three infrared light beacon emitters were set up around the arena behind or in front of a variety of 

the obstacles. The SRR was to be driven by the joystick and come close to the emitters. If the 

emitters were on, infrared was shown as a spike on front panel graphs, the user would start to look 

at the proximity sensor data. However, if the emitter was off, the SRR would continue to the next 

beacon, till it found one that was on and drop off the cube 11-13 inches away from the emitter. 

After a few trial and errors, the SRR was able to successfully locate the infrared emitter which was 

on 5/5 times. Below is an image of the arena the team set up along with an image of the infrared 

emitter. 

 

 

 

Figure 19: Arena with obstacles and 

infrared emitters 

Figure 20: Infrared light 

emitter 
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Discussion:  

Urban Search and Rescue (USAR) workers have 48 hours to find trapped survivors in a 

collapsed structure, otherwise the likelihood of finding victims still alive is nearly zero. Earthquake 

disaster mitigation requires rapid and efficient search and rescue of survivors. As recently seen in 

Turkey and Taiwan, the magnitude of the devastation of urban environments exceeds the available 

resources (USAR specialists, USAR dogs, and sensors) needed to rescue victims within the critical 

first 48 hours. Moreover, the mechanics of how large structures pancake often prevent heroic 

rescue workers from searching buildings due to the unacceptable personal risk from further 

collapse. Finally, and perhaps best addressed by the proposed work, both people and dogs are 

frequently too big to enter voids, limiting the search to no more than a few feet from the perimeter.  

 At the Carnegie Mellon Institute of Robotics, engineers are building a SRR called 

Serpentine. These serpentine robots have degrees of freedom most other robots 

don’t have. They can move freely through narrow spaces without disturbing their 

surrounding environment. This unique form of movement allows for quicker  

rescues and can lead to many other types of similar robotics.  

 The robotics department at Virginia Tech 

has developed a new type of locomotion for a SRR. This Amoeba like 

search and rescue robot has a torodial shape and actuator rings surrounding 

it. The motion of this robot is generated by contracting and expanding these 

rings. The entire contact with the surfaces for traction allows the robot to 

move through the environment with ease, going over uneven surfaces, and decreasing in diameter 

to fit through small spaces most robots wouldn’t be able to access.  

Figure 21: Serpentine SRR 
designed by CMU 

Figure 22: Amoeba like SRR  
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 The teams search and rescue robot, though not as efficient as the robots described above, 

was able to complete its tasks. Though there might be a few things the team might have wanted to 

change about the SRR design to increase aesthetics and efficiency. First, superglue was used to 

hold parts of the plastic together, however that proved to be troublesome at times because it would 

come apart easily. Next time, the team would like to drill holes and properly attach it. Next, the 

movement of the robot could be a little bit more exact with a different algorithm. At the moment, 

the robot moves fine but the right turn is a little slower than the rest.  

Financials: 

Below is a list of materials that were used and the total cost for the completion of this project:  

Item Cost 

Arduino Board $30.00 

Proximity Sensor $11.00 

Infrared Sensor $1.00 

Plastic $5.00 

Third Motor $3.00 

Chassis & Drive Motors $10.00 

Total Cost: $61.00 

 

Conclusion: 

 To conclude, the design for the SRR worked as efficiently as it could and completed its 

given objectives. It was able to successfully detect the infrared light, judge the distance between 

the robot and emitter, and drop the cube between 11-13 inches from the infrared emitter.  The 

team’s overall design was effective and easy to construct, also very aesthetically pleasing. The 

mechanical and electrical systems worked seamlessly with the LabVIEW software to create a small 
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search and rescue robot. The team would like to thank NASA NYCRI for this opportunity as it 

produced promising results.  
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Appendix A: 

 Block Diagram from LabVIEW Software for SRR: 

 

 

 

 

 

 

 

 

 

 

Movement Diagram: 

Sensor Acquisition Diagram: 

Package Release Diagram: 
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Appendix B: 

 

 

 

 

 

 

Front Panel or user interface for SRR: 
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Appendix C: 

 

 

 

Block Diagram for SubVI used in programming USSR 
interface with Arduino: 
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Appendix D: 

Gantt Chart of the Project 
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